Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 681
Filtrar
1.
J Virol ; 98(2): e0203523, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38299844

RESUMO

Bovine viral diarrhea virus (BVDV) is prevalent worldwide and causes significant economic losses. Gut microbiota is a large microbial community and has a variety of biological functions. However, whether there is a correlation between gut microbiota and BVDV infection and what kind of relation between them have not been reported. Here, we found that gut microbiota composition changed in normal mice after infecting with BVDV, but mainly the low abundance microbe was affected. Interestingly, BVDV infection significantly reduced the diversity of gut microbiota and changed its composition in gut microbiota-dysbiosis mice. Furthermore, compared with normal mice of BVDV infection, there were more viral loads in the duodenum, jejunum, spleen, and liver of the gut microbiota-dysbiosis mice. However, feces microbiota transplantation (FMT) reversed these effects. The data above indicated that the dysbiosis of gut microbiota was a key factor in the high infection rate of BVDV. It is found that the IFN-I signal was involved by investigating the underlying mechanisms. The inhibition of the proliferation and increase in the apoptosis of peripheral blood lymphocytes (PBL) were also observed. However, FMT treatment reversed these changes by regulating PI3K/Akt, ERK, and Caspase-9/Caspase-3 pathways. Furthermore, the involvement of butyrate in the pathogenesis of BVDV was also further confirmed. Our results showed for the first time that gut microbiota acts as a key endogenous defense mechanism against BVDV infection; moreover, targeting regulation of gut microbiota structure and abundance may serve as a new strategy to prevent and control the disease.IMPORTANCEWhether the high infection rate of BVDV is related to gut microbiota has not been reported. In addition, most studies on BVDV focus on in vitro experiments, which limits the study of its prevention and control strategy and its pathogenic mechanism. In this study, we successfully confirmed the causal relationship between gut microbiota and BVDV infection as well as the potential molecular mechanism based on a mouse model of BVDV infection and a mouse model of gut microbiota dysbiosis. Meanwhile, a mouse model which is more susceptible to BVDV provided in this study lays an important foundation for further research on prevention and control strategy of BVDV and its pathogenesis. In addition, the antiviral effect of butyrate, the metabolites of butyrate-producing bacteria, has been further revealed. Overall, our findings provide a promising prevention and control strategy to treat this infectious disease which is distributed worldwide.


Assuntos
Doença das Mucosas por Vírus da Diarreia Viral Bovina , Vírus da Diarreia Viral Bovina , Microbioma Gastrointestinal , Animais , Bovinos , Camundongos , Doença das Mucosas por Vírus da Diarreia Viral Bovina/complicações , Doença das Mucosas por Vírus da Diarreia Viral Bovina/microbiologia , Doença das Mucosas por Vírus da Diarreia Viral Bovina/terapia , Doença das Mucosas por Vírus da Diarreia Viral Bovina/virologia , Butiratos/metabolismo , Caspase 3/metabolismo , Caspase 9/metabolismo , Diarreia , Vírus da Diarreia Viral Bovina/patogenicidade , Vírus da Diarreia Viral Bovina/fisiologia , Disbiose/complicações , Disbiose/microbiologia , Disbiose/virologia , MAP Quinases Reguladas por Sinal Extracelular/imunologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Transplante de Microbiota Fecal , Interferon Tipo I/imunologia , Interferon Tipo I/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Modelos Animais de Doenças
2.
J Virol ; 96(17): e0111322, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35993735

RESUMO

Bovine viral diarrhea virus (BVDV) is the causative agent of the bovine viral diarrhea-mucosal disease, which is a leading cause of economic losses in the cattle industry worldwide. To date, many underlying mechanisms involved in BVDV-host interactions remain unclear, especially the functions of long noncoding RNAs (lncRNAs). In our previous study, the lncRNA expression profiles of BVDV-infected Madin-Darby bovine kidney (MDBK) cells were obtained by RNA-seq, and a significantly downregulated lncRNA IALNCR targeting MAPK8/JNK1 (a key regulatory factor of apoptosis) was identified through the lncRNA-mRNA coexpression network analysis. In this study, the function of IALNCR in regulating apoptosis to affect BVDV replication was further explored. Our results showed that BVDV infection-induced downregulation of the lncRNA IALNCR in the host cells could suppress the expression of MAPK8/JNK1 at both the mRNA and protein levels, thereby indirectly promoting the activation of caspase-3, leading to cell-autonomous apoptosis to antagonize BVDV replication. This was further confirmed by the small interfering RNA (siRNA)-mediated knockdown of the lncRNA IALNCR. However, the overexpression of the lncRNA IALNCR inhibited apoptosis and promoted BVDV replication. In conclusion, our findings demonstrated that the lncRNA IALNCR plays an important role in regulating host antiviral innate immunity against BVDV infection. IMPORTANCE Bovine viral diarrhea-mucosal disease caused by BVDV is an important viral disease in cattle, causing severe economic losses to the cattle industry worldwide. The molecular mechanisms of BVDV-host interactions are complex. To date, most studies focused only on how BVDV escapes host innate immunity. By contrast, how the host cell regulates anti-BVDV innate immune responses is rarely reported. In this study, a significantly downregulated lncRNA, with a potential function of inhibiting apoptosis (inhibiting apoptosis long noncoding RNA, IALNCR), was obtained from the lncRNA expression profiles of BVDV-infected cells and was experimentally evaluated for its function in regulating apoptosis and affecting BVDV replication. We demonstrated that downregulation of BVDV infection-induced lncRNA IALNCR displayed antiviral function by positively regulating the MAPK8/JNK1 pathway to promote cell apoptosis. Our data provided evidence that host lncRNAs regulate the innate immune response to BVDV infection.


Assuntos
Apoptose , Doença das Mucosas por Vírus da Diarreia Viral Bovina , Vírus da Diarreia Viral Bovina , Regulação para Baixo , Proteína Quinase 8 Ativada por Mitógeno , RNA Longo não Codificante , Replicação Viral , Animais , Doença das Mucosas por Vírus da Diarreia Viral Bovina/genética , Doença das Mucosas por Vírus da Diarreia Viral Bovina/imunologia , Doença das Mucosas por Vírus da Diarreia Viral Bovina/virologia , Bovinos , Linhagem Celular , Vírus da Diarreia Viral Bovina/crescimento & desenvolvimento , Vírus da Diarreia Viral Bovina/imunologia , Imunidade Inata , Proteína Quinase 8 Ativada por Mitógeno/genética , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , RNA Longo não Codificante/genética , RNA Mensageiro/genética
3.
Viruses ; 14(2)2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35215904

RESUMO

The aim of the report was to present the circulation of BVDV (bovine viral diarrhea virus) in the cattle population and determine the cause of the failure of vaccination failure leading to the birth of the PI (persistently infected) calf. The case study was carried out at the BVDV-free animal breeding center and cattle farm, where the vaccination program against BVDV was implemented in 2012, and each newly introduced animal was serologically and virologically tested for BVDV. In this case, a blood sample was taken from a 9-month-old breeding bull. Positive RT-PCR and negative ELISA serology results were obtained. The tests were repeated at 2-week intervals, and the results confirmed the presence of the virus and the absence of specific antibodies, i.e., persistent infection. Additionally, sequencing and phylogenetic analysis were performed, and the BVDV-1d subgenotype was detected. The results of this study showed that pregnant heifers and cows that are vaccinated multiple times with the killed vaccine containing BVDV-1a may not be fully protected against infection with other subgenotypes of BVDV, including their fetuses, which can become PI calves.


Assuntos
Doença das Mucosas por Vírus da Diarreia Viral Bovina/prevenção & controle , Vírus da Diarreia Viral Bovina/imunologia , Doenças Fetais/prevenção & controle , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais/sangue , Doença das Mucosas por Vírus da Diarreia Viral Bovina/sangue , Doença das Mucosas por Vírus da Diarreia Viral Bovina/embriologia , Doença das Mucosas por Vírus da Diarreia Viral Bovina/virologia , Bovinos , Vírus da Diarreia Viral Bovina/classificação , Vírus da Diarreia Viral Bovina/genética , Vírus da Diarreia Viral Bovina/isolamento & purificação , Feminino , Doenças Fetais/virologia , Masculino , Infecção Persistente/sangue , Infecção Persistente/virologia , Filogenia , Gravidez , Vacinação , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/genética , Vacinas de Produtos Inativados/imunologia , Vacinas Virais/genética
4.
Virology ; 567: 34-46, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34953294

RESUMO

The bovine viral diarrhea virus 1 (BVDV-1), belonging to the Pestivirus genus, is characterized by the presence of two biotypes, cytopathogenic (cp) or non-cytopathogenic (ncp). For a better understanding of the host pathogen interactions, we set out to identify transcriptomic signatures of bovine lung primary cells (BPCs) infected with a cp or a ncp strain. For this, we used both a targeted approach by reverse transcription droplet digital PCR and whole genome approach using RNAseq. Data analysis showed 3571 differentially expressed transcripts over time (Fold Change >2) and revealed that the most deregulated pathways for cp strain are signaling pathways involved in responses to viral infection such as inflammatory response or apoptosis pathways. Interestingly, our data analysis revealed a deregulation of Wnt signaling pathway, a pathway described in embryogenesis, that was specifically seen with the BVDV-1 cp but not the ncp suggesting a role of this pathway in viral replication.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Doença das Mucosas por Vírus da Diarreia Viral Bovina/genética , Efeito Citopatogênico Viral/genética , Vírus da Diarreia Viral Bovina Tipo 1/genética , Transcriptoma , Via de Sinalização Wnt/genética , Animais , Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Doença das Mucosas por Vírus da Diarreia Viral Bovina/metabolismo , Doença das Mucosas por Vírus da Diarreia Viral Bovina/patologia , Doença das Mucosas por Vírus da Diarreia Viral Bovina/virologia , Bovinos , Vírus da Diarreia Viral Bovina Tipo 1/metabolismo , Vírus da Diarreia Viral Bovina Tipo 1/patogenicidade , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Interleucinas/genética , Interleucinas/metabolismo , Pulmão/metabolismo , Pulmão/virologia , Potencial da Membrana Mitocondrial , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/virologia , NF-kappa B/genética , NF-kappa B/metabolismo , Cultura Primária de Células , Mucosa Respiratória/metabolismo , Mucosa Respiratória/virologia , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo , Replicação Viral
5.
Emerg Microbes Infect ; 11(1): 60-72, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34839792

RESUMO

The genus Pestivirus within the family Flaviviridae comprises highly relevant animal pathogens such as bovine viral diarrhoea virus 1 and 2 (BVDV-1 and -2) classified into the two species Pestivirus A and Pestivirus B, respectively. First described in 2004, HoBi-like pestiviruses (HoBiPeV) represent emerging bovine pathogens that belong to a separate species (Pestivirus H), but share many similarities with BVDV-1 and -2. Additionally, two giraffe pestivirus (GPeV) strains both originating from Kenya represent another distinct species (Pestivirus G), whose members replicate very efficiently in bovine cells. In this study, we investigated the role of bovine complement regulatory protein 46 (CD46bov), the receptor of BVDV-1 and -2, in the entry of HoBiPeV and GPeV. For this purpose, bovine CD46-knockout and CD46-rescue cell lines were generated by CRISPR/Cas9 technology and subsequent trans-complementation, respectively. Our results provide strong evidence that the impact of CD46bov differs between viruses belonging to Pestivirus H and viruses representing Pestivirus G: CD46bov revealed to be a major cellular entry factor for HoBiPeV strain HaVi-20. In contrast, GPeV strain PG-2 presented as largely independent of CD46bov, suggesting a different entry mechanism involving other molecular determinants which remain to be identified. In addition, we demonstrated that, similar to BVDV-1 and -2, virus isolates of both Pestivirus H and Pestivirus G are able to adapt to cell culture conditions by using heparan sulfate to enter the host cell. In conclusion, our findings show that different bovine pestiviruses use diverse mechanisms of host cell entry.


Assuntos
Doença das Mucosas por Vírus da Diarreia Viral Bovina/metabolismo , Vírus da Diarreia Viral Bovina/fisiologia , Proteína Cofatora de Membrana/metabolismo , Receptores Virais/metabolismo , Animais , Doença das Mucosas por Vírus da Diarreia Viral Bovina/genética , Doença das Mucosas por Vírus da Diarreia Viral Bovina/virologia , Bovinos , Linhagem Celular , Vírus da Diarreia Viral Bovina/classificação , Vírus da Diarreia Viral Bovina/genética , Proteína Cofatora de Membrana/genética , Receptores Virais/genética , Internalização do Vírus
6.
Viruses ; 13(12)2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34960700

RESUMO

Bovine viral diarrhea virus (BVDV) infection results in a wide variety of clinical manifestations and is a pathogen that is able to cause huge economic losses in the cattle industry worldwide. It is important to identify cattle that are persistently infected (PI) by BVDV within the herd as early as possible because PI animals are the main reservoir of the virus. In contrast, cattle who are acutely infected (AI) with BVDV show various clinical signs, but most cattle show either mild symptoms or are asymptomatic. In general, AI and PI animals can be distinguished by repeat testing within an interval of at least 21 days. However, we found a rare case of a BVDV2-infected AI animal with long-term viral presence, making it indistinguishable from PI through two tests within an interval of 21 days. As a result, we diagnosed one infected animal as AI after 35 days from the initial sample collection via multiple analyses. Our findings recommend performing an additional test using samples that have been collected after 14-21 days from the second sample collection in cases where it is difficult to accurately differentiate an AI diagnosis from a PI diagnosis after only two tests. Additionally, our analysis exhibits that monitoring the number of copies of viruses with similar genomes in the sera by means of quantitative real-time RT-PCR through several sample collections periods might be useful to distinguish AI from PI. Furthermore, our data suggest that the AI animals with a long-term viral presence who show test results similar to those of PI animals might be the result of a coincidental combination of various factors that are present in cattle fields. These findings provide useful information that can be used to improve the diagnosis of BVDV in the field.


Assuntos
Doença das Mucosas por Vírus da Diarreia Viral Bovina/diagnóstico , Vírus da Diarreia Viral Bovina Tipo 2 , Regiões 5' não Traduzidas , Doença Aguda , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Doença das Mucosas por Vírus da Diarreia Viral Bovina/virologia , Bovinos , Vírus da Diarreia Viral Bovina Tipo 2/classificação , Vírus da Diarreia Viral Bovina Tipo 2/genética , Vírus da Diarreia Viral Bovina Tipo 2/imunologia , Vírus da Diarreia Viral Bovina Tipo 2/isolamento & purificação , Filogenia , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Manejo de Espécimes , Fatores de Tempo
7.
Infect Genet Evol ; 96: 105089, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34563649

RESUMO

Bovine viral diarrhea virus (BVDV) is an important pathogen of ruminants worldwide and is characterized by high genetic diversity and a wide range of clinical presentations. In Argentina, several studies have evaluated the genetic diversity of BVDV but no phylodynamic study has been published yet. In this study, a comprehensive compilation and update of Argentinean BVDV sequences were performed, and the evolutionary history of BVDV was characterized by phylodynamic analyses based on the 5´UTR. Although BVDV-1b and BVDV-1a were the most frequent subtypes, novel subtypes for Argentina, 1e and 1i, were identified. The phylodynamic analysis suggested that BVDV started its diversification in the mid-1650s with an exponential increase in viral diversity since the late 1990s, possibly related to the livestock expansion and intensification in the country. Evolutionary rate in the 5´UTR was faster for BVDV-1a than for BVDV-1b, and both subtypes presented an endemic nature according to the demographic reconstructions. The current study contributes to clarify the evolutionary history of BVDV in the main cattle region of the country and provides useful information about the epidemiology and future development of diagnostic and control tools in Argentina.


Assuntos
Doença das Mucosas por Vírus da Diarreia Viral Bovina/epidemiologia , Vírus da Diarreia Viral Bovina/genética , Variação Genética , Genoma Viral , Animais , Argentina/epidemiologia , Doença das Mucosas por Vírus da Diarreia Viral Bovina/virologia , Bovinos , Vírus da Diarreia Viral Bovina Tipo 1/genética , Vírus da Diarreia Viral Bovina Tipo 2/genética , Filogenia
8.
BMC Vet Res ; 17(1): 242, 2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34247601

RESUMO

BACKGROUND: As a global ruminant pathogen, bovine viral diarrhea virus (BVDV) is responsible for the disease Bovine Viral Diarrhea with a variety of clinical presentations and severe economic losses worldwide. Classified within the Pestivirus genus, the species Pestivirus A and B (syn. BVDV-1, BVDV-2) are genetically differentiated into 21 BVDV-1 and four BVDV-2 subtypes. Commonly, the 5' untranslated region and the Npro protein are utilized for subtyping. However, the genetic variability of BVDV leads to limitations in former studies analyzing genome fragments in comparison to a full-genome evaluation. RESULTS: To enable rapid and accessible whole-genome sequencing of both BVDV-1 and BVDV-2 strains, nanopore sequencing of twelve representative BVDV samples was performed on amplicons derived through a tiling PCR procedure. Covering a multitude of subtypes (1b, 1d, 1f, 2a, 2c), sample matrices (plasma, EDTA blood and ear notch), viral loads (Cq-values 19-32) and species (cattle and sheep), ten of the twelve samples produced whole genomes, with two low titre samples presenting 96 % genome coverage. CONCLUSIONS: Further phylogenetic analysis of the novel sequences emphasizes the necessity of whole-genome sequencing to identify novel strains and supplement lacking sequence information in public repositories. The proposed amplicon-based sequencing protocol allows rapid, inexpensive and accessible obtainment of complete BVDV genomes.


Assuntos
Doença das Mucosas por Vírus da Diarreia Viral Bovina/virologia , Vírus da Diarreia Viral Bovina Tipo 1/genética , Vírus da Diarreia Viral Bovina Tipo 2/genética , Animais , Doença das Mucosas por Vírus da Diarreia Viral Bovina/epidemiologia , Bovinos , Alemanha , Epidemiologia Molecular , Ovinos , Doenças dos Ovinos/virologia , Sequenciamento Completo do Genoma/veterinária
9.
Vet Microbiol ; 260: 109178, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34330023

RESUMO

Bovine Pestivirus heterogeneity is a major challenge for vaccines against bovine viral diarrhea (BVD). In breeding herds, fetal protection is a high priority issue. To some degree, fetal infections in vaccinated heifers have been attributed to the antigenic diversity of bovine Pestiviruses. The purpose of this study was to assess fetal protection against a divergent bovine Pestivirus (Hobi-like Pestivirus, HoBiPeV) with a commercially available modified live vaccine (MLV) claiming fetal protection against BVDV 1 and BVDV 2 up to one year after the first inoculation. Five vaccinated and four unvaccinated heifers were challenged by intranasal inoculation with the HoBiPeV Italy-1/10-1 strain between 82 and 89 days after insemination, i.e. between 4 and 6 months after vaccination. At challenge, neutralizing antibody titers to HoBiPeV in vaccinated heifers were low or even undetectable. Of the four unvaccinated heifers, one control animal aborted (fetus not available) and the remaining three gave birth to HoBiPeV positive calves. Among the heifers of the vaccinated group, one aborted the fetus in the sixth month of pregnancy, which tested Pestivirus negative, while three others gave birth to healthy, HoBiPeV negative calves; the remaining heifer delivered one HoBiPeV positive calf. The results suggest that the BVDV vaccine might be able to elicit a partial fetal protection against HobiPeV, even in absence of a strong specific antibody response.


Assuntos
Doença das Mucosas por Vírus da Diarreia Viral Bovina/prevenção & controle , Vírus da Diarreia Viral Bovina Tipo 1/imunologia , Vírus da Diarreia Viral Bovina Tipo 2/imunologia , Síndrome Hemorrágica Bovina/prevenção & controle , Complicações Infecciosas na Gravidez/veterinária , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes , Doença das Mucosas por Vírus da Diarreia Viral Bovina/virologia , Bovinos , Proteção Cruzada , Feminino , Feto/virologia , Síndrome Hemorrágica Bovina/virologia , Gravidez , Complicações Infecciosas na Gravidez/prevenção & controle , Complicações Infecciosas na Gravidez/virologia , Vacinas Atenuadas/imunologia
10.
Vet Microbiol ; 256: 109047, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33866081

RESUMO

Hypomyelination is a rare consequence of in utero bovine viral diarrhoea virus (BVDV) infection. We describe a BVDV outbreak in a naïve Holstein dairy herd in northern Italy, with an unusually high prevalence of calves with neurological signs, generalised tremors and ataxia. Histological analysis showed that hypomyelination was the predominant lesion and that the most typical BVDV neuropathological findings (e.g. cerebellar hypoplasia) were absent. Virological and molecular analyses showed that non-cytopathic BVDV genotype 1b was associated with the calves' neurological signs and excluded other viruses responsible for congenital infection or neurological disorders. Whole-genome sequencing of BVDVs from the brain of a calf with neurological signs and the whole blood of a persistently infected herd-mate with no such sign showed >99.7 % sequence identity. Analysis of the quasispecies distribution revealed the greatest variation rates in regions coding for the structural proteins E1 and E2. Variation was slightly greater in the brain- than in the blood-derived sequence and occurred at different sites, suggesting the occurrence of distinct evolutionary processes in the two persistently infected calves. Molecular characterisation of BVDV genomes from five other calves with neurological signs from the same farm confirmed that the E1 and E2 regions were the most variable. Several factors, including genetic variability and host factors, appear to have contributed to the observed unique BVDV disease phenotype, characterised by hypomyelination and neurological signs.


Assuntos
Doença das Mucosas por Vírus da Diarreia Viral Bovina/epidemiologia , Vírus da Diarreia Viral Bovina Tipo 1/imunologia , Surtos de Doenças/veterinária , Genoma Viral/genética , Tremor/veterinária , Animais , Animais Recém-Nascidos , Doença das Mucosas por Vírus da Diarreia Viral Bovina/virologia , Bovinos , Vírus da Diarreia Viral Bovina Tipo 1/genética , Feminino , Genótipo , Masculino , Fenótipo , Tremor/congênito , Tremor/epidemiologia , Sequenciamento Completo do Genoma/veterinária
11.
BMC Biotechnol ; 21(1): 30, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33892712

RESUMO

BACKGROUND: Bovine viral diarrhea virus (BVDV) is a major economic disease that has been spread in most countries. In addition to vaccination, one of the main ways to control the disease and prevent it from spreading is to detect and cull infected animals, especially those with persistent infection (PI). We developed and compared two colorimetric biosensor assays based on probe-modified gold nanoparticles (AuNPs) to detect BVDV. Specific probes were designed to detect the 5' untranslated region of BVDV-RNA. The thiolated probes were immobilized on the surface of the AuNPs. Two methods of cross-linking (CL) and non-crosslinking (NCL) probe-AuNPs hybridization were developed and compared. RESULTS: The hybridization of positive targets with the two probe-AuNPs formed a polymeric network between the AuNPs which led to the aggregation of nanoparticles and color change from red to blue. Alternatively, in the NCL mode, the hybridization of complementary targets with the probe-AuNPs resulted in the increased electrostatic repulsion in nanoparticles and the increased stabilization against salt-induced aggregation. The CL and NCL assays had detection limits of 6.83 and 44.36 ng/reaction, respectively. CONCLUSION: The CL assay showed a higher sensitivity and specificity; in contrast, the NCL assay did not require optimizing and controlling of hybridization temperature and showed a higher response speed. However, both the developed methods are cost-effective and easy to perform and also could be implemented on-site or in local laboratories in low-resource countries.


Assuntos
Técnicas Biossensoriais/métodos , Doença das Mucosas por Vírus da Diarreia Viral Bovina/virologia , Colorimetria/métodos , Vírus da Diarreia Viral Bovina Tipo 1/genética , Animais , Técnicas Biossensoriais/instrumentação , Bovinos , Colorimetria/instrumentação , Vírus da Diarreia Viral Bovina Tipo 1/isolamento & purificação , Ouro/química , Nanopartículas Metálicas/química , Hibridização de Ácido Nucleico , Sensibilidade e Especificidade
12.
Arch Virol ; 166(4): 1163-1170, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33554289

RESUMO

The envelope glycoprotein E2 of pestiviruses is a major target for neutralizing antibodies. In this study, we analyzed the E2 DA domain of 43 pestiviruses from Southern Brazil. The isolates were identified as Bovine viral diarrhea virus (BVDV) subtypes 1a and 1b or BVDV-2b. Compared to reference strains, the BVDV-1 and -2 isolates had four and two mutations in the DA domain, respectively. All BVDV-2 isolates had a deletion of residues 724 and 725. All mutated amino acids in the BVDV isolates had the same aa substitution, and all were in previously identified antibody binding sites. It is possible that an immunity-mediated selection is acting on the pestiviruses circulating in Southern Brazil.


Assuntos
Vírus da Diarreia Viral Bovina/genética , Vírus da Diarreia Viral Bovina/isolamento & purificação , Proteínas do Envelope Viral/genética , Animais , Antígenos Virais/genética , Sítios de Ligação de Anticorpos/genética , Doença das Mucosas por Vírus da Diarreia Viral Bovina/epidemiologia , Doença das Mucosas por Vírus da Diarreia Viral Bovina/virologia , Brasil/epidemiologia , Bovinos , Vírus da Diarreia Viral Bovina/classificação , Vírus da Diarreia Viral Bovina/imunologia , Mutação , Filogenia , RNA Viral/genética , Proteínas do Envelope Viral/imunologia
13.
Arch Virol ; 166(4): 1259-1262, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33582856

RESUMO

In 2019, diarrhea cases occurred on cattle farms in Qionglai and Guang'an, Sichuan Province. Two out of 20 (10%) serum and nasal swab samples were positive when tested using a bovine viral diarrhea virus (BVDV) antigen-capture ELISA kit. Two non-cytopathic strains of BVDV were isolated and named QL1903 and GA190608, respectively. The nucleotide sequences of the genomes of the two isolates were 89.52% identical. Phylogenetic analysis based on the 5'-UTR sequence revealed that the BVDV isolate QL1903 belonged to BVDV subtype 1b, whereas isolate GA190608 clustered with strains HN1814, EN-19, and BJ09_26 in a separate branch, which has tentatively been classified as a new genetic subtype, "1v".


Assuntos
Doença das Mucosas por Vírus da Diarreia Viral Bovina/virologia , Vírus da Diarreia Viral Bovina Tipo 1/classificação , Vírus da Diarreia Viral Bovina Tipo 1/genética , Regiões 5' não Traduzidas/genética , Animais , Doença das Mucosas por Vírus da Diarreia Viral Bovina/diagnóstico , Bovinos , Linhagem Celular , Vírus da Diarreia Viral Bovina Tipo 1/imunologia , Vírus da Diarreia Viral Bovina Tipo 1/isolamento & purificação , Variação Genética , Genoma Viral/genética , Genótipo , Filogenia , RNA Viral/genética , Proteínas Virais/imunologia
14.
Prev Vet Med ; 188: 105263, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33453562

RESUMO

A stochastic quantitative risk assessment model was developed to estimate the annual probability of introduction of bovine viral diarrhea virus (BVDV) and bovine herpesvirus 1 (BoHV-1) on 127 dairy farms through indirect contacts. Vehicles transporting calves, cattle to slaughterhouse, dead animals, and mixture of feed, as well as visits by veterinarians and hoof trimmers, farm workers and contacts with neighbors were considered in the model. Data from biosecurity questionnaires of each farm, scientific literature and expert opinion from field veterinarians, animal vehicle drivers, hoof trimmers and personnel from rendering transport companies were used to estimate values for input parameters. Results showed that the annual probability of introducing BVDV or BoHV-1 through indirect contacts was very heterogeneous. The overall distribution of median values for each farm ranged from 0.5 to 14.6% and from 1.0 to 24.9% for BVDV and BoHV-1, respectively. The model identified that providing protective clothing and boots to visits, not allowing the animal vehicle driver to come into contact with animals present on the farm and ensuring that calf vehicles arrived empty, were the measures with the highest impact on the probability of infection for most farms. This model could be a useful tool to show the impact of the measures to farmers and veterinarians, thus increasing their awareness on biosecurity. In addition, it could support decision making on which measures should be prioritized in dairy cattle herds to reduce the probability of introduction of diseases.


Assuntos
Doença das Mucosas por Vírus da Diarreia Viral Bovina/epidemiologia , Indústria de Laticínios/métodos , Vírus da Diarreia Viral Bovina/fisiologia , Infecções por Herpesviridae/veterinária , Herpesvirus Bovino 1/fisiologia , Animais , Doença das Mucosas por Vírus da Diarreia Viral Bovina/virologia , Bovinos , Infecções por Herpesviridae/epidemiologia , Infecções por Herpesviridae/virologia , Prevalência , Medição de Risco , Espanha/epidemiologia
15.
Arch Virol ; 166(2): 607-611, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33392819

RESUMO

In this study, we performed phylogenetic and evolutionary analysis on bovine viral diarrhea virus 1 (BVDV-1) sequences to investigate the origin and temporal diversification of different BVDV-1 subtypes. Dated phylogenies using the complete polyprotein sequence were reconstructed, and the time of the most recent common ancestor (tMRCA) was estimated. The results demonstrated that BVDV-1 subtypes clustered into two phylogenetic clades, where the predominant subtypes worldwide grouped together. In the temporal analysis, the tMRCA of BVDV-1 was 1336, and the diversification into different subtypes appears to have occurred around 363 years ago. The present results help to elucidate the origins of BVDV-1 subtypes and the dynamics of ruminant pestiviruses.


Assuntos
Vírus da Diarreia Viral Bovina Tipo 1/genética , Variação Genética/genética , Animais , Doença das Mucosas por Vírus da Diarreia Viral Bovina/virologia , Bovinos , Genótipo
16.
Vet Microbiol ; 252: 108949, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33338948

RESUMO

Bovine viral diarrhea viruses (BVDV) are significant pathogens of cattle, leading to losses associated with reproductive failure, respiratory disease and immune dysregulation. While cattle are the reservoir for BVDV, a wide range of domestic and wild ruminants are susceptible to infection and disease caused by BVDV. Samples from four American bison (Bison bison) from a captive herd were submitted for diagnostic testing due to their general unthriftiness. Metagenomic sequencing on pooled nasal swabs and serum identified co-infection with a BVDV and a bovine bosavirus. The BVDV genome was more similar to the vaccine strain Oregon C24 V than to other BVDV sequences in GenBank, with 92.7 % nucleotide identity in the open reading frame. The conserved 5'-untranslated region was 96.3 % identical to Oregon C24 V. Bosavirus has been previously identified in pooled fetal bovine serum but its clinical significance is unknown. Sequencing results were confirmed by virus isolation and PCR detection of both viruses in serum and nasal swab samples from two of the four bison. One animal was co-infected with both BVDV and bosavirus while separate individuals were positive solely for BVDV or bosavirus. Serum and nasal swabs from these same animals collected 51 days later remained positive for BVDV and bosavirus. These results suggest that both viruses can persistently infect bison. While the etiological significance of bosavirus infection is unknown, the ability of BVDV to persistently infect bison has implications for BVDV control and eradication programs. Possible synergy between BVDV and bosavirus persistent infection warrants further study.


Assuntos
Anticorpos Antivirais/sangue , Doença das Mucosas por Vírus da Diarreia Viral Bovina/virologia , Vírus da Diarreia Viral Bovina/imunologia , Infecções por Parvoviridae/veterinária , Parvovirus/imunologia , Animais , Bison , Doença das Mucosas por Vírus da Diarreia Viral Bovina/epidemiologia , Bovinos , Coinfecção/veterinária , Vírus da Diarreia Viral Bovina/isolamento & purificação , Infecções por Parvoviridae/microbiologia , Parvovirus/isolamento & purificação , Reação em Cadeia da Polimerase/veterinária , Estados Unidos/epidemiologia
17.
Front Immunol ; 11: 589537, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33281819

RESUMO

Bovine Viral Diarrhea Virus (BVDV) is an important pathogen that plays a significant role in initiating Bovine Respiratory Disease Complex (BRDC) in cattle. The disease causes multi-billion dollar losses globally due to high calf mortality and increased morbidity leading to heavy use of antibiotics. Current commercial vaccines provide limited cross-protection with several drawbacks such as safety, immunosuppression, potential reversion to virulence, and induction of neonatal pancytopenia. This study evaluates two prototype vaccines containing multiple rationally designed recombinant mosaic BVDV antigens for their potential to confer cross-protection against diverse BVDV strains. Genes encoding three novel mosaic antigens, designated E2123, NS2-31, and NS2-32, were designed in silico and expressed in mammalian cells for the formulation of a prototype protein-based vaccine. The mosaic antigens contain highly conserved protective epitopes from BVDV-1a, -1b, and -2, and included unique neutralizing epitopes from disparate strains to broaden coverage. We tested immunogenicity and protective efficacy of Expi293TM-expressed mosaic antigens (293F-E2123, 293F-NS2-31, and 293F-NS2-32), and baculovirus-expressed E2123 (Bac-E2123) mosaic antigen in calves. The Expi293TM-expressed antigen cocktail induced robust BVDV-specific cross-reactive IFN-γ responses, broadly neutralizing antibodies, and following challenge with a BVDV-1b strain, the calves had significantly (p < 0.05) reduced viremia and clinical BVD disease compared to the calves vaccinated with a commercial killed vaccine. The Bac-E2123 antigen was not as effective as the Expi293TM-expressed antigen cocktail, but it protected calves from BVD disease better than the commercial killed vaccine. The findings support feasibility for development of a broadly protective subunit BVDV vaccine for safe and effective management of BRD.


Assuntos
Antígenos Virais/imunologia , Doença das Mucosas por Vírus da Diarreia Viral Bovina/terapia , Bovinos/imunologia , Vírus da Diarreia Viral Bovina/imunologia , Vacinas Virais/administração & dosagem , Animais , Antígenos Virais/genética , Doença das Mucosas por Vírus da Diarreia Viral Bovina/imunologia , Doença das Mucosas por Vírus da Diarreia Viral Bovina/virologia , Epitopos/imunologia
18.
Mol Biol Rep ; 47(12): 9959-9965, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33226564

RESUMO

In-vitro fertilization is a routine livestock-breeding technique widely used around the world. Several studies have reported the interaction of bovine viral-diarrhea virus (BVDV) with gametes and in-vitro-produced (IVP) bovine embryos. Since, gene expression in BVDV-infected IVP bovine embryos is scarcely addressed. The aim of this work was to evaluate the differential expression of genes involved in immune and inflammatory response. Groups of 20-25 embryos on Day 6 (morula stage) were exposed (infected) or not (control) to an NCP-BVDV strain in SOF medium. After 24 h, embryos that reached expanded blastocyst stage were washed. Total RNA of each embryo group was extracted to determine the transcription levels of 9 specific transcripts related with antiviral and inflammatory response by SYBR Green real time quantitative (RT-qPCR). Culture media and an aliquot of the last embryos wash on Day 7 were analyzed by titration and virus isolation, respectively. A conventional PCR confirmed BVDV presence in IVP embryos. A significantly higher expression of interferon-α was observed in blastocysts exposed to NCP-BVDV compared to the controls (p < 0.05). In this study, the upregulation of INFα and TLR7 genes involved in inflammatory and immune response in BVDV-infected IVP bovine embryos is a new finding in this field. This differential expression suggest that embryonic cells could function in a manner like immune cells by recognizing and responding early to interaction with viral pathogens. These results provide new insights into the action of BVDV on the complex molecular pathways controlling bovine early embryonic development.


Assuntos
Doença das Mucosas por Vírus da Diarreia Viral Bovina , Bovinos , Vírus da Diarreia Viral Bovina/imunologia , Desenvolvimento Embrionário/imunologia , Expressão Gênica/imunologia , Interferon-alfa , Animais , Doença das Mucosas por Vírus da Diarreia Viral Bovina/embriologia , Doença das Mucosas por Vírus da Diarreia Viral Bovina/imunologia , Doença das Mucosas por Vírus da Diarreia Viral Bovina/virologia , Bovinos/embriologia , Bovinos/imunologia , Vírus da Diarreia Viral Bovina/isolamento & purificação , Embrião de Mamíferos/imunologia , Embrião de Mamíferos/virologia , Feminino , Fertilização In Vitro , Interferon-alfa/imunologia , Receptor 7 Toll-Like/imunologia
19.
Mol Immunol ; 128: 33-40, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33053462

RESUMO

The bovine viral diarrhea virus (BVDV-1) is a pathogen with the capacity to modulate the interferon type I system. To further investigate the effects of BVDV-1 on the production of the immune response, the Madin-Darby bovine kidney cell line was infected with the cytopathic CH001 field isolate of BVDV-1, and the IFNbeta expression profiles were analyzed. The results showed that cpBVDV-1 was able to induce the production of IFNbeta in a way similar to polyinosinic-polycytidylic acid, but with less intensity. Interestingly, all cpBVDV-1 activities were blocked by pharmacological inhibitors of the IRF-1, IRF-7, and NF-κB signaling pathway, and the level of IFNbeta decreased at the level of transcript and protein. These results, together with in silico analyses showing the presence of several regulatory consensus target motifs, suggest that cpBVDV-1 regulates IFNbeta expression in bovines through the activation of several key transcription factors. Collectively, the results suggest that during cpBVDV-1 infection, cross talk is evident between various signaling pathways involved in transcriptional activation of IFNbeta in cattle.


Assuntos
Doença das Mucosas por Vírus da Diarreia Viral Bovina/genética , Vírus da Diarreia Viral Bovina Tipo 1/imunologia , Regulação da Expressão Gênica/genética , Expressão Gênica/genética , Fator Regulador 1 de Interferon/genética , Fator Regulador 7 de Interferon/genética , NF-kappa B/genética , Animais , Doença das Mucosas por Vírus da Diarreia Viral Bovina/virologia , Bovinos , Linhagem Celular , Células Epiteliais/imunologia , Células Epiteliais/virologia , Expressão Gênica/imunologia , Regulação da Expressão Gênica/imunologia , Fator Regulador 1 de Interferon/imunologia , Fator Regulador 7 de Interferon/imunologia , NF-kappa B/imunologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia
20.
Acta Trop ; 212: 105712, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32961168

RESUMO

The aim of this preliminary study was to determine the prevalence of Bovine Viral Diarrhea Virus (BVDV) and its association with reproductive problems in cattle in Timika, Southern Papua, Indonesia, an emerging area for beef production. Serum from 77 beef cattle was collected from four villages and tested, using both antibody and antigen ELISA kits for BVDV. Data of the villages of origin, age, breed, sex and the number of parities of the cattle were collected. The pregnancy status of the cattle was determined by rectal examination. Results showed that the prevalence of BVDV antibody in individual cattle in Timika was 11.7% (CI: 6.1 - 20.0%), while at the farm level the antibody prevalence was 18.4% (CI: 8.9 - 33.7%).). Seropositivity for BVDV increased with age (P=0.02), from 0% (CI: 0 - 37.2%) in less than two-years old to 28.6% (CI: 11.3 - 55.0%) in cattle older than eight years of age. BVDV antibody was 2.9 times more prevalent in non-pregnant cows than in antibody negative cows (CI: 1.02 - 8.14, P=0.04). BVD antigen was not detected in the present study. This study reported for the first time, evidence of infection with BVDV in cattle in Papua and indicated that BVDV infection may be associated with infertility.


Assuntos
Anticorpos Antivirais/sangue , Doença das Mucosas por Vírus da Diarreia Viral Bovina/epidemiologia , Vírus da Diarreia Viral Bovina/isolamento & purificação , Diarreia/virologia , Animais , Doença das Mucosas por Vírus da Diarreia Viral Bovina/virologia , Bovinos , Diarreia/veterinária , Ensaio de Imunoadsorção Enzimática/veterinária , Feminino , Indonésia/epidemiologia , Gravidez , Reprodução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...